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Abstract
A cosmological constant, �, is the most natural candidate to explain the origin
of the dark energy (DE) component in the universe. However, due to some
experimental evidence that the equation of state (EOS) of the DE could be
evolving with time/redshift (including the possibility that it might behave
phantom-like near our time) has led theorists to emphasize that there might
be a dynamical field (or some suitable combination of them) that could explain
the behaviour of the DE. While this is of course one possibility, here we
show that there is no imperative need to invoke such dynamical fields and
that a variable cosmological constant (including perhaps a variable Newton’s
constant too) may account, in a natural way, for all these features.

PACS numbers: 04.62.+v, 98.80.Cq

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The phenomenon of the accelerated expansion of the universe is presently one of the central
issues of both observational and theoretical cosmologies. A number of diverse cosmological
observations [1, 2] have by now established the accelerated nature of the present expansion
of the universe and even provided additional information on the deceleration/acceleration
transition and the redshift dependence of the expansion of the universe. From the theoretical
side, the sole fact that the universe is presently accelerating, and may continue to do so,
has triggered many studies. Some particularly interesting possibilities include braneworld
models of the late-time cosmic acceleration [3]. The real theoretical challenge, however, lies
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in understanding the dynamics leading to the accelerated expansion of the universe. Despite
the fact that many promising models have been proposed, the fundamental nature of the
accelerating mechanism remains presently unknown. The attempts towards shedding some
light on the cause of the acceleration of the universe employ a broad range of concepts in
many theoretical frameworks. The most widely used and the conceptually simplest option
assumes the existence of dark energy (DE), the cosmic component with negative pressure.
Dark energy is a very useful concept since it encodes all our ignorance on the acceleration of
the universe in a single cosmic component. Furthermore, DE can also be used as an effective
description of other mechanisms of the acceleration of the universe [4]. An obvious candidate
for the role of DE is the cosmological constant (CC) [5]. The cosmological model with
the cold dark matter and the CC as the DE component, a so-called �CDM cosmology, fits the
data well. Theoretically, the CC as a DE candidate faces a grave problem of many orders of
magnitude difference of its theoretically predicted and observed values. This huge discrepancy
clearly calls for a more profound treatment of the CC problem. The inconsistencies related
to the CC problem have led to the development of many dynamical DE models. The tacit
assumption of these models is that the CC does not contribute to DE or that it vanishes, which
merely circumvents the CC problem. The dynamical DE models, however, incorporate the
advantage that they approach the modelling of the mysterious dark energy component in a
more general way, allowing its properties to vary with the expansion. The dynamical DE
models, among others, comprise quintessence [6], phantom energy [7], Chaplygin gas [8]
and others. These models of DE are very often realized in terms of dynamical scalar field(s)
which were introduced long ago in cosmology on more or less phenomenological grounds
[9, 10]. In the quintessence approach these fields and their parameters/scales are not related
to the known particle physics fields and their parameters/scales and as a consequence a clear
connection to the fundamental physics is lacking. In this paper we generalize the CC concept
allowing the variability of the � term and possibly the gravitational coupling G with the
cosmic time, both assumptions are compatible with the cosmological principle. The support
for such a generalization comes from the quantum field theory on the curved spacetime
[11, 12] and/or quantum gravity approaches [13]. Here, however, we do not derive the
variability of the aforementioned parameters from these models, but discuss the general
implications of the variability of � and possibly G valid in any specific model of the mentioned
type. Let us emphasize that this approach embodies many virtues. The problem of the CC
is dealt with instead of circumventing it. The variability of � may shed some light on the
observed value of the CC. The variable CC is indeed a type of dynamical DE, and will be
handled here in the language of the effective dark energy picture.

2. Dark energy picture versus the variable cosmological constant picture

Before presenting the general procedure of obtaining the effective dark energy density
corresponding to the variable CC model, we briefly discuss the frameworks of two approaches
which we call the DE picture and the variable CC picture. The dark energy picture assumes
the existence of two separately conserved cosmological components, the matter component
and the DE component. In the Einstein equation

Rµν − 1
2gµνR = 8πGT̃µν, (1)

where the total energy–momentum tensor is T̃µν = T s
µν +T D

µν . The standard energy–momentum
tensors of matter T s

µν and the one for the dark energy T D
µν are conserved separately. In the



Cosmology with variable parameters and effective equation of state for dark energy 6755

framework of FRW metric, the conservation of the energy–momentum tensor for matter
radiation, ∇µT s

µν = 0, leads to the standard conservation law

dρs

dt
+ αHDρs = 0. (2)

Here α = 3(1+ωs) where ωs = 0 and 1/3 for nonrelativistic matter and radiation, respectively.
The assumption that ∇µT D

µν = 0 results in the additional conservation law for the DE:

dρD

dt
+ 3(1 + ωe)HDρD = 0. (3)

Generally the parameter ωe is redshift dependent, ωe = ωe(z). The Hubble parameter is
defined by the Friedmann equation

H 2
D = 8πG0

3
(ρs + ρD), (4)

where a subscript D has been appended to H to differ expression (4) from its counterpart in the
variable CC picture. The solution of the conservation laws (2) and (3) results in the following
scaling laws for the components of the model:

ρs(z) = ρs(0)(1 + z)α (5)

and

ρD(z) = ρD(0)ζ(z), ζ(z) ≡ exp

{
3
∫ z

0
dz′ 1 + ωe(z

′)
1 + z′

}
.

Using expressions (5) and (6), the Friedmann equation acquires the form

H 2
D(z) = H 2

0 [�̃0
M(1 + z)α + �̃0

Dζ(z)]. (7)

The variable cosmological constant picture describes the models studied in this paper. The
model incorporates the matter component, the variable CC component and, possibly although
not necessarily, the variable gravitational coupling G. The variable CC model represents
the modification of Einstein equation of general relativity which maintains its geometrical
interpretation. The dynamical equation for gravity is given by

Rµν − 1
2gµνR = 8πG(Tµν + gµνρ�), (8)

where Tµν stands for the energy–momentum tensor of matter. This equation demonstrates
that the full covariance is maintained even if ρ� and G acquire spacetime variability. In the
framework of FRW metric, CC and G depend on cosmic time only, in accordance with the
cosmic principle. The Friedmann equation is straightforwardly obtained from (8) and reads

H 2
� = 8πG

3
(ρ + ρ�). (9)

The general Bianchi identity of the Einstein tensor leads to the covariant conservation law

∇µ[G(Tµν + gµνρ�)] = 0, (10)

which for the FRW metric acquires the form

d

dt
[G(ρ + ρ�)] + 3GH�(ρ + p) = 0. (11)

This ‘mixed’ conservation law connects the variation of ρ�,G and ρ, where the scaling of
the matter density ρ may be noncanonical. In this paper, we consider a very broad class
of models, just assuming the variability of the aforementioned quantities, without specifying
the fundamental origin of such a variation. A number of variable CC models of various
kinds [14], and the renormalization group (RG) models of running ρ� and G [11–13] provide
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the basis for the variability of these cosmological parameters. For example, the RG models
[11, 12] do not determine the time dependence of ρ� and G directly, but indirectly specifying
them in terms of other cosmic dynamic quantities (matter density ρ, Hubble parameter H, etc):

ρ�(z) = ρ�(ρ(z),H(z), . . .), G(z) = G(ρ(z),H(z), . . .). (12)

These functions usually have a monotonic dependence when expressed as functions of cosmic
time or redshift. The relations (12), with the general conservation law (11), lead to the complete
solution of the variable CC cosmological model. Using these solutions, the expression for the
Hubble parameter becomes

H 2
�(z) = H 2

0 [�0
MfM(z; r)(1 + z)α + �0

�f�(z; r)]. (13)

Here fM and f� are known functions of redshift which also depend on parameters
r = r1, r2, . . . originating from the fundamental dynamics. They generally have a non-
trivial dependence on z and only in the case of �CDM cosmology they satisfy fM = f� = 1.
Furthermore, they also fulfil the conditions fM(0, r) = 1 and f�(0, r) = 1 in accordance
with the cosmic sum rule �0

M + �0
� = 1. Note that in general the two sets of cosmological

parameters in the two pictures (13) and (7) will be different, e.g. 	�M ≡ �0
M − �̃0

M �= 0,
because they correspond to two different fits of the same data.

3. Matching of pictures and effective dark energy equation of state

The two pictures presented in the preceding section may be considered as two separate, general
DE models. In the remainder of the paper we, however, assume that they are the equivalent
descriptions of the same cosmological evolution. More precisely, we study the effective DE
dynamics associated with the variable CC model through the procedure named the matching
of pictures. The matching of pictures requires that the expansion history of the universe
is the same in both pictures, i.e. that their Hubble functions are equal, HD = H�. In this
way, for a known dynamics of the variable CC model, an effective DE can be constructed.
A number of general results for the behaviour of the effective DE density can be obtained
with interesting implications to the observational data. The matching procedure of the two
pictures H 2

� = H 2
D , gives the equality connecting the dynamical cosmological quantities in

both pictures, G(ρ +ρ�) = G0(ρs +ρD). Using Hdt = −dz/(1+z) and the matching relation,
the general Bianchi identity (11) can be written in the form

(1 + z) d(ρs + ρD) = α(ρs + ρD − ξ�) dz, (14)

where we have introduced

ξ�(z) = G(z)

G0
ρ�(z). (15)

Using the scaling law (2) for ρs , we arrive at the compact form for the redshift evolution of
the effective DE density

dρD(z)

dz
= α

ρD(z) − ξ�(z)

1 + z
. (16)

The integration of (16) readily yields a closed form expression for the effective DE density

ρD(z) = (1 + z)α
[
ρD(0) − α

∫ z

0

dz′ξ�(z′)
(1 + z′)(α+1)

]
. (17)

Expanding ξ�(z) around z = −1 one can see that ρD(z) → ξ�(z) at sufficiently late time
(i.e. when z → −1). The expression for ωe becomes very simple and informative using the
effective DE density

ωe(z) = −1 +
α

3

(
1 − ξ�(z)

ρD(z)

)
≡ −1 + ε(z), (18)
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where ρD is given by (17). From this expression it is clear that ωe crosses the ωe = −1 line
when the ξ� equals ρD . This observation reinforces the role of the effective DE density ρD in
the study of the CC boundary crossing in the dark energy picture5.

4. Effective quintessence and phantom behaviour of a general variable Λ/G model

The solution of (16) can be reformulated in the following way:

ρD(z) = ξ�(z) − (1 + z)α
∫ z

z∗

dz′

(1 + z′)α
dξ�(z′)

dz′ . (19)

Here z∗ is the redshift value at which ξ�(z∗) = ρD(z∗). Quite remarkably, one can show that a
value z∗ always exists near present time, in the recent past, immediate future or just at z∗ = 0.
The proof of this claim is obtained by a straightforward calculation starting from the matching
condition and the conditions that the general Bianchi identity (11) imposes on functions f�

and fM in (13) and it stems from the relation

dζ(z)

dz
= α(1 + z)α−1

1 − �̃0
M

(
�0

MfM(z; r) − �̃0
M

)
. (20)

Since fM is a continuous function of z, at the present epoch it satisfies the condition
fM(0, r) = 1 and the parameter difference 	�M = �0

M − �̃0
M is not large; from (20) it

is clear that z∗ is close to 0. The advantage of the formulation (19) becomes evident when one
calculates the slope of the ρD function:

dρD(z)

dz
= −α(1 + z)α−1

∫ z

z∗

dz′

(1 + z′)α
dξ�(z′)

dz′ . (21)

This compact expression reveals some counterintuitive and general aspects of the effective
DE density evolution for variable CC models in which ξ�(z) is a monotonous function of z.
Intuitively one would expect that for ξ�(z) growing/decreasing with z (decreasing/growing
with expansion) ρD should be quintessence-like/phantom-like. Expression (21) reveals that
this is not the case. Namely, for ξ�(z) growing with z, ρD decreases with z for z > z∗, i.e.
in this redshift interval has the phantom-like characteristics. Only for z < z∗, ρD behaves
as quintessence. Analogously, for ξ�(z) decreasing with z, ρD behaves like quintessence for
z > z∗, whereas only for z < z∗ it becomes phantom-like. (For a concrete framework, see
section 5 and figure 1.) These results illustrate that in variable CC models, the behaviour of
effective DE density is generally not determined by the CC only, but by the joint behaviour
of all quantities entering the general Bianchi identity (11). Especially interesting results are
obtained when in the variable CC models the matter component ρ is separately conserved. In
this case we have dξ�/dt = −(ρ/G0) dG/dt , which results in the following expression for
the slope of ρD:

dρD

dz
= α(1 + z)α−1 ρ(0)

G0
[G(z) − G(z∗)]. (22)

Thus, in this case the properties of ρD depend only on the scaling of G with redshift, e.g. if G
is asymptotically free and z∗ > z, then ρD behaves effectively as quintessence.

5. Effective dark energy picture of the RG model

As an illustration of the presented procedure of obtaining the effective dark energy
properties, in this section we present the analysis [18] of the renormalization group

5 For other recent theoretical approaches to the ωe = −1 boundary crossing, see e.g. [17].
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Figure 1. (a) Numerical analysis of ωeff ≡ ωe , equation (23), as a function of the redshift for
fixed ν = −ν0 < 0, and for various values of 	�. The universe is assumed to be spatially flat
(�0

K = 0) with the standard parameter choice �0
M = 0.3,�0

� = 0.7; (b) extended z range of the
plot (a). We see that for 	� < 0 there exists a transition point z∗ near our recent past: namely,
the one corresponding to the crossing of the CC barrier w = −1 by the lowest curve in the figures.

model of [15] characterized by G = const and the ρ� = C1 + C2H
2 scaling. Here

C1 = ρ�,0 − (
3νH 2

0

)/
(8πG) and C2 = (3ν)/(8πG), where ν is the single free parameter

of the model—a typical value is |ν| = ν0 ≡ 1/12π [18]. This model is fully analytically
tractable and simple expressions for ωe can be obtained. In this particular case it is clear that
(15) reads ξ�(z) = ρ�(z). Therefore, for the flat universe case the effective parameter of EOS
obtained from (17) and (18) is

ωe(z)|	� �=0 = −1 + (1 − ν)
�0

M(1 + z)3(1−ν) − �̃0
M(1 + z)3

�0
M [(1 + z)3(1−ν) − 1] − (1 − ν)

[
�̃0

M(1 + z)3 − 1
] . (23)

For |ν| � 1 we may expand the previous result in first order in ν. Assuming 	� = 0 we find

ωe(z) � −1 − 3ν
�0

M

�0
�

(1 + z)3 ln(1 + z). (24)

This result reflects the essential qualitative features of the general analysis presented in the
previous sections. For ν > 0, equation (24) clearly shows that we can get an (effective)
phantom-like behaviour (ωe < −1) and for ν < 0 we have (effective) quintessence behaviour.
We see that this variable CC model can give rise to two types of very different behaviours by
just changing the sign of a single parameter. However, one can play with more parameters if
desired. Indeed, as we have seen the cosmological parameters in the two pictures (DE versus
CC picture) will generally be different (	� �= 0). Figure 1 shows in a patent manner that in
this case, even for ν < 0, the variable CC model may exhibit phantom behaviour due to the
existence of a transition point z∗ in our recent past.

6. Conclusions

We have shown that a model with variable � and/or G generally leads to a non-trivial effective
EOS, thus mimicking a dynamical DE model which can effectively appear as quintessence
and even as phantom energy. The eventual determination of an empirical EOS for the DE in
the next generation of precision cosmology experiments should keep in mind this possibility.
Moreover, we have proven that there always exists a transition point z∗ near z = 0, where
ωe(z

∗) = −1. If this point lies in our recent past (as illustrated in figure 1(a)) there could



Cosmology with variable parameters and effective equation of state for dark energy 6759

have been a recent transition into an (effective) phantom regime ωe(z) � −1, as suggested
by several analyses of the data [19]. We conclude that variable (ρ�,G) models may account
for the observed evolution of the DE, without the need for invoking any combination of
fundamental quintessence and phantom fields.
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Štefančić H 2004 Phys. Lett. B 586 5
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[11] Shapiro I L and Solà J 2002 J. High Energy Phys. JHEP02(2002)006
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Guberina B, Horvat R and Štefančić H 2003 Phys. Rev. D 67 083001
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